References

- 1 McGowan C. & Reith M. E. (1999) Mol Ecol 8, 1761–63.
- 2 Bristol G. & Andersen R. D. (1995) C-primer. Department of Medicine, Hem-Onc and the Department of Biochemistry, School of Medicine, University of California, Los Angeles, USA.
- 3 Allendorf F. W. & Thorgaard G. H. (1984) Tetraploidy and the evolution of salmonid fishes. In: Evolutionary Genetics of Fishes (Ed. by B.J. Turner), pp. 1–46. Plenum Press, New York, USA.
- 4 Woram R. A. et al. (2004) Genome 47, 304-15.

Correspondence: W. Davidson (wdavidso@sfu.ca)

doi:10.1111/j.1365-2052.2004.01206.x

Thirty-five new equine microsatellite loci assigned to genetic linkage and radiation hybrid maps

J. R. Mickelson*, M. L. Wagner*, G. Goh[†], J. T. Wu*, L. Y. Morrison*, L. J. Alexander[‡], T. Raudsepp[‡], L. C. Skow[‡], B. P. Chowdhary[‡], J. E. Swinburne[§] and M. M. Binns[§]

*Department of Veterinary Biosciences, College of Veterinary Medicine, University of Minnesota, 295 AS/VM, 1988 Fitch Ave., St Paul, MN 55108, USA. *Department of Veterinary Anatomy and Public Health, College of Veterinary Medicine, Texas A & M University, College Station, TX 77843, USA. *USDA ARS, Fort Keogh LARRL, 243 Fort Keogh Road, Miles City, MT 59301, USA. *Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK

Accepted for publication 7 October 2004

Source/description: Horse genomic DNA was digested with restriction enzyme MboI, size selected by gel electrophoresis for fragments between 200 and 1200 bp, and ligated into the BamHI site of the M13 phage vector. Clones containing a potential microsatellite were identified by screening the library with [\$^{32}P] 5' end labelled oligo [dCA]\$_{16}\$ and oligo [dGT]\$_{16}\$ probes. DNA was isolated from positive plaques and the inserts were sequenced using an ABI 3100 automated sequencer. Primer pairs for polymerase chain reaction (PCR) amplification of the markers were developed using the PRIMER program (Version 0.5; M.J. Daly, S.E. Lincoln and E.S. Lander, unpublished data). Sequence accession numbers, primer pairs, repeat motif, and PCR product sizes based on the cloned sequences are provided in Table 1.

PCR conditions: The PCR for determination of microsatellite polymorphisms were performed in 15 μ l volumes consisting of the following reagents: 25 ng DNA, 1× PCR Buffer (Qiagen, Valencia, CA, USA), 1.5 mm MgCl₂, 25 μ m each of dCTP, dGTP, and dTTP, 6.25 μ m dATP, 0.125 μ Ci [α -³²P] dATP, 0.45 U Hot Start *Taq* polymerase (Qiagen), and 5 pmol each primer. Amplification was done using a MJ Research PTC100 thermocycler (Watertown, MA, USA) under the following conditions:

initial 20 min denaturation at 95 °C; 30 cycles of 94 °C for 30 s, annealing temperatures that ranged from 54 to 62 °C for 30 s, and 72 °C for 30 s; and a final 5 min extension at 72 °C. These reaction products were electrophoresed through 7% acrylamide denaturing gels on BioRad SequiGen GT 38 \times 50-cm plate sequencing gel units (Hercules, CA, USA), in the presence of 1× TBE, and allele sizes detected using autoradiography.

The PCR for genotyping of markers in a reference family (see below) were performed in 15 μl volumes consisting of the following reagents: 25 ng genomic horse DNA, 1× GeneAmp PCR buffer II (Applied Biosystems, Foster City, CA, USA), 1.5 mM MgCl $_2$, 200 μM each dNTP and 1.5 units Amplitaq GOLD TM (Applied Biosystems). Three primers were used for labelling the PCR product: 5 pmol reverse primer (Table 1), 2 pmol forward primer (Table 1) containing the 5′ tail sequence TGACCGG-CAGCAAAATTG, and 10 pmol of fluorescently-labelled TGACCGGCAGCAAAATTG. The PCR conditions, using a MJ Tetrad thermocycler, were: initial 10 min denaturation at 95 °C; 30 cycles of 30 s at 95 °C, 30 s at 60 °C, 1 min at 72 °C; and a final 10 min extension at 72 °C. Alleles were detected using an Applied Biosystems 3100 automated sequencer running GENESCAN 3.7 software (Applied Biosystems).

The PCR for typing markers on the 5000 rad whole genome equine radiation hybrid panel comprising 92 horse \times hamster hybrid cell lines contained 50 ng DNA, 5 pmol each primer, 2.0 mm MgCl₂,0.3 Units HotStar *Taq* Polymerase (Qiagen), and 10× PCR buffer which contained Tris-Cl, KCl, and (NH₄)₂SO₄ (Qiagen). Markers were typed in duplicate, separated by electrophoresis on 2.5% agarose gels, and scored manually.

Allele frequencies: Genotypes were obtained from 12 stallions of the Equine Genome Mapping Workshop International Reference Family, and/or three horses (one stallion, two mares) from the parental generation of the Newmarket full-sibling reference family. The number of alleles of each marker observed in these sample populations is reported in Table 1.

Mendelian inheritance and chromosomal assignments: Mendelian inheritance for the markers was confirmed by observing segregation of alleles through the Newmarket three generation full-sibling reference family consisting of 71 animals.³ The chromosomal locations provided in Table 2 were identified by two-point linkage analysis in reference to existing markers on the full-sibling family map using CRIMAP software. The previous chromosomal assignments of two markers by RH mapping (*UMNe362* and *UMNe520*)^{4, 5} were confirmed by genetic linkage.

Radiation hybrid mapping and chromosomal assignments: The PCR typing on the 5000 rad equine RH panel and data analysis for 30 of the markers was performed as described in detail earlier. Two point analysis with the RHMAPPER software was carried out to assign markers to map positions on the current equine radiation hybrid map at lod ≥ 12.0 . Chromosomal assignments and nearest linked markers for all new equine microsatellites are provided in Table 2. Three markers (UMNe486, UMNe504 and UMNe532) assigned to the genetic linkage map did not show significant linkage to markers on the current radiation hybrid map. One marker (UMNe405) assigned to ECA2 by genetic linkage exhibited significant linkage to markers on the radiation hybrid maps of both ECA2 and ECA9.

482 Brief notes

Table 1 Equine microsatellite loci UMNe122–UMNe550, including accession number, repeat motif, PCR primers and product sizes, and polymorphism.

Marker	GenBank accession number	Repeat motif	Primer 1 (5'->3')	Primer 2 (5'->3")	Product size (bp)	Heterozygotes	Alleles
UMNe122	AY731378	CA12	CCATGTGTTCACAAACTCGG	TGGAACTTTCCAGTCCAAGG	102	4	3
UMNe189	AY731379	CA16	GATCAAATACCCTCTGCAAAGC	GGCTTCATATCCTCCCTTACC	148	9	8
UMNe201	AY731380	CA15	TATGTGTGAACTTGGTGGTAGC	TGCATAAACATACGCTCATGC	143	7	3
UMNe267	AY731381	CA10	AGCCTCCATATGCTTTGTCG	GGAATTGACTCAGTCCTGAAGG	150	2*	2
UMNe269	AY731382	CA10	GATCAAAGGCGGGATGTG	ATGACACCTGATGAGGACCTG	150	1*	2
UMNe307	AY731383	CA12	ATTGTCCCTGCTCCATGAAG	GTCCCCATGCTCTCCATG	139	5	4
UMNe311	AY731384	CA8 N2 CA6	GATATCCTACACCGAGGACTGC TCGTTCTTTGCTGTCTGGG		179	4	3
UMNe336	AY731385	CA12	ACCTTCTCTTTGGAAGGAAATG	GAGACCTAAGCATGGAGCATG	119	4	3
UMNe340	AY731386	CA14	TCTGTCTGTCTCGCGCTG	ACTGTGTACTGGTCCAGGCC	133	2*	4
UMNe341	AY731387	CA11	TCCAACTTTTTGCATATGTTGC	ACGTTTGAACTTCAATCCAACC	223	2	2
UMNe342	AY731388	CA11	TCCACTCTCCCAAACTCCTG	TGCAGCTATCATTTTACCATGG	207	3	3
UMNe345	AY731389	CA17	CCAATCTGCTTTTTCACTTGC	ATACTGGTAAGGGCACCGTG	196	5	5
UMNe354	AY731390	CA15	AACTGTCCCAATTTTCCCG	CTTCCGTTCCTCCCTCTACC	270	1*	3
UMNe362	AY391350	CA10	GAGAGAGAGTATGCGCGC	GATTCCAAAGGCTATCCACTC	117	2*	2
UMNe384	AY731391	CA19	AGTCAGGAGAGACAGTGTAGGC	TCATGGAAGCATTTCCCTAG	251	2*	4
UMNe405	AY731392	CA19	TTTTCCATCTGGGAATCAGG	ACATAATGCTTGGAAGAGGTGG	234	3*	4
UMNe426	AY731393	CA11	TGGCTTTCATCTGAACTGTTC	TGGCCTGGGAGGTTATTTTG	139	2*	4
UMNe432	AY731394	CA11	CTGACGTCACTGGCAACG	GCGGAGTCCCACATAACG	282	2*	3
UMNe441	AY731395	CA13	GATAAACTGTCCTCCTGCTGAG	GGCAGAAAGTTCTGTGGAGTG	150	2*	3
UMNe448	AY731396	CA13	CCATTCTGCCCTGATTGG	TTCAAGACCCCTCAATCTGC	164	3*	4
UMNe454	AY731397	CA18	GGGAGAAACACCTACAGAGTGG	AGACTGAATTGCCCCATTTG	244	2*	3
UMNe455	AY731398	CA12	TGAGGTACTGTGCCTTGCTG	CTGGGAAGACAGAGCCAGTC	130	1*	3
UMNe474	AY731399	CA15	CCAAAGGGTGGAAATTGATG	TTTTGCCTCTCTCACCATCC	217	2*	3
UMNe476	AY731400	CA11	GAGTCATGTTCACCATCCCC	TTAGACGGTCAGCCAGCAG	227	1*	2
UMNe479	AY731401	CA22	TACGGTAGGACCAATGCCTC	GCCGTCAGAGAAAAGACAGG	175	7	4
UMNe486	AY731402	CA19	CAAATTATTGTTCCCTCTTGCC	GACTACTGGGCTTCACAGGC	217	3*	4
UMNe493	AY731403	CA15	GAACAGAAGGAAAAGCCATCC	ATGGAAGCTTTGCTCCTAAGG	108	2*	3
UMNe501	AY731404	CA16	CCCATGATTTAATTGTCTGCTG	TCCAAGTTTTTCCCGAAATG	296	2*	3
UMNe504	AY731405	CA13	ACCATCGACCAGTTTCCTTG	AAGAGCCCTTTCTTTGGCTC	283	3*	5
UMNe520	AY464515	CA11	AACAACTGCTTTCTTTCTGCC	TCGTAGCATCCCTCACATAC	139	2*	3
UMNe523	AY731406	CA12	GTTCCTGATATTGAAAACACCC	TTTTTTGGCATTACTTCCCTAC	243	1*	2
UMNe530	AY731407	CA13	AATGAAGCCAAGTGAATGGG	GTCTGAACCCTGTAACCTCACC	224	2*	2
UMNe532	AY731408	CA13	TAACATCAATTGGGCAAAACG	GTAGCAAAAGGGGTGTGTGC	233	2*	4
UMNe537	AY731409	CA14	TGCATTACGGGAAAGGAATC	CTGAACTGCACACTGAGAAATG	129	4	5
UMNe539	AY731410	CA19	GGTTTCCAAATGAGTGGTTTG	CAATTTAAGATTCATTGGGGAG	126	7	6
UMNe544	AY731411	CA14	GCCAGGTGTCCCACGTAC	CTGGACCAGCCTCACTCTTC	189	2*	4
UMNe550	AY731412	CA18	GAGTATCACTGCTCCCAGGC	TTTTGGGGACTGTCATTTAACC	122	7	4

Markers were typed on the 12 stallions of the Equine Genome Mapping Workshop International Reference Family unless otherwise noted. *Markers that were only typed on the Animal Health Trust reference family parents.

Table 2 Chromosomal assignments for equine microsatellite loci UMNe122–UMNe550, including meiotic linkage and radiation hybrid map assignments.

Marker	Chromosome	Nearest marker	Recom. fraction	Lod	Chromosome (by RH)	Nearest marker (by RH)	Distance (cR)
UMNe122	ECA16	AHT063	0	10.24	ECA16	AHT081	4.71
UMNe189	ECA10	ASB005	0.08	5.95	ECA10	NOV	12.90
UMNe201	ECA11	SGCV013	0.00	6.02	ECA11	COL1A1	19.97
UMNe267	ECA10	LEX017	0.04	10.26	ECA11	NV007	0.00
UMNe269	ECA10	ASB038	0.04	9.14	No significant linkage	74 4007	0.00
UMNe307	ECA27	HMS047	0.03	13.91	ECA18	SG07	19.12
UMNe311	ECA16	UM068	0.05	10.84	ECA16	HMS61	36.96
UMNe336	ECA3	UM226	0	3.61	ECA3	SMARCA5	31.61
UMNe340	ECA30	UM088	0.01	24.7	ECA30	UCD455	9.21
UMNe341	ECA30	HTG005	0.01	7.22	ECA20	LEX064	9.65
UMNe342	ECA9	AHT053	0.02	12.55	ECA9	OAZIN	20.21
UMNe345	ECA28	UCDEQ425	0.04	13.11	ECA28	UCD425	3.15
UMNe354	ECA28	UM166	0.07	14.3	ECA28	IGF1	4.40
UMNe362	ECA25	COR018	0.07	9.03	ECA25	TXN	19.48
UMNe384	ECA17	UM052	0	22.28	ECA17	LEX076	1.92
UMNe405	ECA2	AHT012	0	19.27	ECA2 and ECA9	LLX070	1.52
UMNe426	ECA10	LEX017	0.05	11.46	ECA10	UM040	8.77
UMNe432	ECA21	AHT078	0.03	12.04	ECA21	AHT078	0.80
UMNe441	ECA22	SGCV019	0	11.74	ECA22	GNAS1	6.83
UMNe448	ECA1	1CA030	0	12.04	ECA1	VIASH34	7.26
UMNe454	ECA5	LEX004	0	11.74	ECA5	AHT024	0.00
UMNe455	ECA5	LEX014	0	5.12	ECA5	LEX014	8.56
UMNe474	ECA14	UM032	0	18.36	ECA14	UM032	8.12
UMNe476	ECA27	UCDEQ005	0	3.61	ECA27	UCD005	0.10
UMNe479	ECA8	SGCV032	0	7.22	ECA8	DSC2	26.4
UMNe486	ECA1	HMS015	0	15.95	No significant linkage	2302	20
UMNe493	ECA9	ASB004	0.04	5.67	ECA9	NOV	0.00
UMNe501	ECA18	TKY101	0.02	9.69	ECA18	COL3A1	0.00
UMNe504	ECA8	AHT025	0.03	18.86	No significant linkage		
UMNe520	ECA1	UM002	0	13.25	ECA1	ASB12	6.94
UMNe523	ECA27	UCDEQ005	0	3.31	ECA27	ASB38	0.00
UMNe530	ECA30	UM078	0	7.22	ECA30	UMNe078	36.82
UMNe532	ECA8	UM034	0.05	13.69	No significant linkage		
UMNe537	ECA22	AHT031	0.07	7.65	ECA22	HMS47	2.22
UMNe539	ECA21	HTG010	0	24.99	ECA21	SG16	32.57
UMNe544	ECA4	HTG007	0.04	5.4	ECA4	HTG07	19.85
UMNe550	ECA14	UM239	0	6.92	ECA14	CSPG2	7.04

Acknowledgements: The Horserace Betting Levy Board and the Childwick Trust supported J.E.S and M.M.B. Awards from the Morris Animal Foundation and the United States Department of Agriculture National Research Initiate Competitive Grants (JRM, LJA, LCS, BPC), the Texas Higher Education Board (ARP 010366-0162-2001; BPC), Link Endowment (BPC, LCS), and the Dorothy Russell Havemeyer Foundation (BPC). We also wish to thank Ms Louise Pettit for expert technical assistance.

References

- 1 Chowdhary B. P. et al (2003) Genome Res 13, 742-51.
- 2 Guérin G. et al. (1999) Anim Genet 30, 341-54.
- 3 Swinburne J. E. et al. (2000) Genomics 66, 123-34.
- 4 Wagner M. et al. (2004) Anim Genet 35, 68-71.
- 5 Wagner M. et al. (2004) Anim Genet 35, 159-62.

Correspondence: J. R. Mickelson (micke001@umn.edu)

doi:10.1111/j.1365-2052.2004.01205.x

Sixty-seven new equine microsatellite loci assigned to the equine radiation hybrid map

M. L. Wagner*, G. Goh[†], J. T. Wu*, L. Y. Morrison*, L. J. Alexander[†], T. Raudsepp[‡], L. C. Skow[‡], B. P. Chowdhary[‡] and J. R. Mickelson*

*Department of Veterinary Biosciences, College of Veterinary Medicine, University of Minnesota, 295 AS/VM, 1988 Fitch Ave., St Paul, MN 55108, USA. [†]USDA ARS, Fort Keogh LARRL, 243 Fort Keogh Road, Miles City, MT 59301, USA. [‡]Department of Veterinary Anatomy and Public Health, College of Veterinary Medicine, Texas A & M University, College Station, TX 77843, USA Accepted for publication 7 October 2004

Source/description: Horse genomic DNA was digested with restriction enzyme MboI, size selected by gel electrophoresis for fragments between 200 and 1200 bp, and ligated into the BamHI site of the M13 phage vector. Clones containing a potential microsatellite were identified by screening the library with [32P] 5' end labelled oligo [dCA]₁₆ and oligo [dGT]₁₆ probes. DNA was isolated from positive plaques and the inserts were sequenced using an ABI 3100 automated sequencer. Primer pairs for polymerase chain reaction (PCR) amplification of the markers were developed using the PRIMER program (Version 0.5; M.J. Daly, S.E. Lincoln and E.S. Lander, unpublished data). Sequence accession numbers, primer pairs, repeat motif, and PCR product sizes based on the cloned sequences are provided in Table 1.

PCR conditions: The PCR for determination of microsatellite polymorphisms were performed in 15 μ l volumes consisting of

the following reagents: 25 ng DNA, $1\times$ PCR Buffer (Qiagen, Valencia, CA, USA), 1.5 mm MgCl $_2$, 25 μm each of dCTP, dGTP, and dTTP, 6.25 μm dATP, 0.125 $\mu Ci \left[\alpha^{-32}P\right]$ dATP, 0.45 U Hot Start $\it Taq$ polymerase (Qiagen), and 5 pmol each primer. Amplification was done using a MJ Research PTC100 thermocycler (Watertown, MA, USA) under the following conditions: initial 20 min denaturation at 95 °C; 30 cycles of 94 °C for 30 s, annealing temperatures that ranged from 54 to 62 °C for 30 s, and 72 °C for 30 s; and a final 5 min extension at 72 °C. These reaction products were electrophoresed through 7% acrylamide denaturing gels on BioRad SequiGen GT 38×50 -cm plate sequencing gel units (Hercules, CA, USA), in the presence of $1\times$ TBE, and allele sizes detected using autoradiography.

The PCR for typing markers on the 5000 rad whole genome equine radiation hybrid panel comprising 92 horse \times hamster hybrid cell lines contained 50 ng DNA, 5 pmol each primer, 2.0 mm MgCl₂,0.3 Units HotStar Taq Polymerase (Qiagen), and $10\times$ PCR buffer which contained Tris-Cl, KCl, and $(NH_4)_2SO_4$ (Qiagen). Markers were typed in duplicate, separated by electrophoresis on 2.5% agarose gels, and scored manually.

Allele frequencies: Genotypes were obtained from 12 stallions of the Equine Genome Mapping Workshop International Reference Family, and/or three horses (one stallion, two mares) from the parental generation of the Newmarket full-sibling reference family. The number of alleles of each marker observed in these sample populations is reported in Table 1.

Radiation hybrid mapping and chromosomal assignments: The PCR typing on the 5000 rad equine RH panel and data analysis was performed as described in detail earlier. Two point analysis with the RHMAPPER software was carried out to assign markers to map positions on the current equine radiation hybrid map 1 at lod ≥ 12.0 . Chromosomal assignments and nearest linked markers for all new equine microsatellites are provided in Table 1.

Acknowledgements: This work was supported by awards from the Morris Animal Foundation and the United States Department of Agriculture National Research Initiate Competitive Grants (JRM, LJA, LCS, BPC), the Texas Higher Education Board (ARP 010366-0162-2001; BPC), Link Endowment (BPC, LCS), and the Dorothy Russell Havemeyer Foundation (BPC).

References

- 1 Chowdhary B. P. et al (2003) Genome Res 13, 742-51.
- 2 Guérin G. et al. (1999) Anim Genet 30, 341-54.
- 3 Swinburne J. E. et al. (2000) Genomics 66, 123-34.

Correspondence: J. R. Mickelson (micke001@umn.edu)